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Objectives

1. Accurately predict the bias of MCNP6 criticality calculations using
machine learning algorithms
� Using ensembles of decision trees

2. Identify which isotope reactions lead to bias
� Using feature importances from decision trees

3. Determine if ke� sensitivity pro�les from MCNP6 are good
features for machine learning
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Motivations

� Bias (ksim � kexp) is extremely important for criticality safety
� Used for calculating upper subcritical limits

� Knowing what isotope reactions are leading to bias informs what
physics models or data can be improved

� ML algorithms are great for problems where traditional approaches
provide no solution
� Can model extremely complicated relationships, and provide insights

about large data sets
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Background - Computational Bias
Upper Subcritical Limit (USL)

� A calculated Ke� < 1.0 is not su�cient to ensure subcriticality
� Must account for bias uncertainties in the calculational method

Image obtained from LANL Whisper presentation.
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Background - Whisper

� Statistical analysis code used to determine USL
� Uses sensitivity pro�les from continuous energy MCNP6
� Uses covariance data for nuclear cross sections
� Finds applications that are neutronically similar to application of

interest
� Features:

� Calculates bias and bias uncertainty using extreme value theory
� Calculates margin for nuclear data uncertainty using generalized linear

least squares method
� Contains:

� 1,100 benchmarks with experimental and simulated ke�
� Metal, composite, and solution experiments containing Pu and U
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Background - Sensitivity Pro�les

� How sensitive is ke� to uncertainty in some parameter?
� De�ned as the ratio of relative change in a response to a relative

change in a system parameter:

Sk;x =
�k=k
�x=x
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Background - Sensitivity Pro�les

� Magnitude is proportional to its impact of the system’s e�ective
multiplication

� The sign of the sensitivity coe�cient gives the direction that k
would change

� The sensitivity coe�cient has the property of being additive
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Machine Learning is the �eld of study that gives computers the
ability to learn from data without being explicitly programmed
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Machine Learning Tasks
Regression

� Predict a target numeric variable

Image obtained from Wikipedia’s Linear Regression page

Classi�cation
� Identifying group membership

Image obtained from
https://sebastianraschka.com/faq/docs/evaluate-a-
model.html
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Decision Trees

� A tree like model of decisions
based on features

� All features are considered to
split the data

� Splits are chosen that
minimize a cost function
(MSE)

� More important features are
found near the top

Image obtained from
https://algobeans.com/2016/07/27/decision-trees-tutorial
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Ensembles of Decision Trees

� Random Forest
� Each tree is trained on a random subset of the training instances
� Using a random subset of features from the total feature set

� Adaboost
� Iterative process where new predictors pays more attention to the

cases that the previous predictors made errors on
� Pays more attention to the di�cult cases
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Methods - Features and Targets

� Sensitivity Pro�les
� Inherently carry enough information to characterize a system
� Can be used to �nd patterns that inuence bias

� ksim
� Generated with the sensitivity vectors from MCNP6
� Strong linear relationship between bias and ksim

� Predicting:
� Bias (ksim - kexp)
� kexp
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Methods - Training and Validating
Model Evaluation

� Ten fold cross-validation

Image obtained from
https://sebastianraschka.com/faq/docs/evaluate-a-
model.html

Model Complexity
� Minimize model error

Image obtained at
https://stats.stackexchange.com/questions/69549/
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Results - Sensitivity Vectors as Features

� Are sensitivity pro�les su�cient to characterize the problem?
� Beginning to model the relationship
� MSE = 2.723E-5, RMSE = 0.00521, MAE = .00374
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Results - Adaboost Predicting Bias

� Accurate for cases with high number of benchmarks
� Higher errors for Pu - composite, HEU composite, and MOX

solutions.
� MSE = 9.106E-6, RMSE = 0.00301, MAE = .00177
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Results - Random Forest Predicting Bias

� Slightly less accurate than Adaboost
� Higher errors for same cases
� MSE = 1.498E-5, RMSE = 0.00387, MAE = .00248
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Results - Adaboost Predicting kmeas

� Increased accuracy - same units as bias
� Di�erent error pro�le
� MSE = 1.668E-6, RMSE = 0.00129, MAE = .00062
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Results - Performance Statistics

� Models that predict kmeas perform much better
� Average experimental uncertainty for kmeas is 0.003



20/26

Results - Feature Importances

� Obtained from random forest regressor
� Mostly actinides and other elements common in dataset
� Some unexpected elements like U-234
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Results - Feature Importances

� Break down importance by energy
� Again U 234 has three reactions in top 10
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Results - Feature Importances

� U-234 n-gamma reaction
� Leu-comp-therm-079-010
� U-234 makes up 0.0074% of rod
� ke� n-gamma sensitivity is

12.58% of the average
� Pattern of low concentration

and high sensitivity importance
seen in other cases as well
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Conclusion

� Sensitivity vectors are excellent features for ML algorithms
� ML algorithms estimate bias very accurately for criticality

simulations
� Feature importances imply what iso-rxns are important to

predicting bias
� These methods should be explored for applications
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Future Work

� Incorporating conservatism into models (NCS angle)
� Applying these methods to reactors
� Investigate high importance reactions
� Continued optimization of models and incorporating neural

networks
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Thank you!
Questions?
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